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Primitive recursive functions

A scheme for defining functions from Nk to N.

Basic functions:

— constant function c0 : N
0 → N, () 7→ 0

— successor function s : N → N, (x) 7→ x+ 1

— projections πk
i : Nk → N, (x1, . . . , xk) 7→ xi

Constructions:

— composition: If g1, . . . , gk : Nl → N and h : Nk → N are primitive
recursive, then so is h ◦ (g1, . . . , gk) : N

l → N.

— primitive recursion: If f : Nk → N and g : Nk+2 → N are primitive
recursive, then so is h : Nk+1 → N, given by

h(0, x1, . . . , xk) := f(x1, . . . , xk)
h(s(y), x1, . . . , xk) := g(y, h(y, x1, . . . , xk), x1, . . . , xk)
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µ-recursion

To primitive recursion add:

— minimisation: If f : Nk+1 → N is a µ-recursive function, then so is
µ(f) : Nk → N, where

µ(f)(x1, . . . , xk) := the smallest z such that f(z, x1, . . . , xk) = 0
if such a z exists
and undefined otherwise
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Where it all started

D. S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY.
Manuscript, University of Oxford, 1969

[...] probably the most well-known unpublished manuscript in
Programming Language Theory.
(Gunter 1992)
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Where it all started

D. S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY.
Manuscript, University of Oxford, 1969

[...] probably the most well-known unpublished manuscript in
Programming Language Theory.
(Gunter 1992)

D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science, 121:411–440, 1993
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From partial functions to domains
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From partial functions to domains

⊥
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From partial functions to domains

?

⊥ ⊥
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What to do with ⊥?

• Allow it to be mapped arbitrarily?

• Always map it to ⊥?

and stipulate that functions have to 1 the order.
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What to do with ⊥?

• Allow it to be mapped arbitrarily?

• Always map it to ⊥?

Scott’s proposal: Introduce an order relation in which ⊥ is smaller than
every other element:

⊥

tf

⊥

0 1 2 3

N⊥ B⊥

and stipulate that functions have to preserve the order.
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An example function space: [B⊥ → B⊥]

Instead of 33 = 27 many elements we get 11:

Ct

id ¬

cf ct

[B⊥ → B⊥]

Cf

NB: This contains the 22 = 4 many elements of [B → B], or the 32 = 9
elements of [B⇀ B].
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What’s the difference between cf and Cf?

cf : t 7→ f
f 7→ f
⊥ 7→ ⊥

Cf : t 7→ f
f 7→ f
⊥ 7→ f

2
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What’s the difference between cf and Cf?

cf : t 7→ f
f 7→ f
⊥ 7→ ⊥

Cf : t 7→ f
f 7→ f
⊥ 7→ f

bool c false(bool x) {if (x == true) return false else

return false;}

bool C false(bool x) {return false;}

2
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What’s the difference between cf and Cf?

cf : t 7→ f
f 7→ f
⊥ 7→ ⊥

Cf : t 7→ f
f 7→ f
⊥ 7→ f

bool c false(bool x) {if (x == true) return false else

return false;}

bool C false(bool x) {return false;}

Do we care about such distinctions?
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A more complicated example: [N⊥ → N⊥]

As before:

[N⊥ → N⊥] contains all of [N → N] or [N⇀ N], so - in particular - has
uncountably many elements.
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A more complicated example: [N⊥ → N⊥]

As before:

[N⊥ → N⊥] contains all of [N → N] or [N⇀ N], so - in particular - has
uncountably many elements.

It also contains infinite ascending chains:

0 7→ 0 ⊑ 0 7→ 0
1 7→ 1

⊑ 0 7→ 0
1 7→ 1
2 7→ 4

⊑ 0 7→ 0
1 7→ 1
2 7→ 4
3 7→ 9

⊑ . . .
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Scott’s thesis

How big is [[N⊥ → N⊥] → N⊥?

Scott observed that a terminating computation of type
(nat → nat) → nat

can query its argument 1.

Thus only a 1 of the graph of the argument is needed.

This was known to recursion theorists as the 1.

Scott formulated and generalized this as follows:

If f is computable and if the input is of the form
⊔

↑xi then the
output f(x) can be computed as

⊔
↑f(xi).

Furthermore, this should hold at 2.
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Scott’s thesis

How big is [[N⊥ → N⊥] → N⊥?

Scott observed that a terminating computation of type
(nat → nat) → nat

can query its argument only finitely often.

Thus only a finite part of the graph of the argument is needed.

This was known to recursion theorists as the Myhill-Shepardson Theorem.

Scott formulated and generalized this as follows:

If f is computable and if the input is of the form
⊔

↑xi then the
output f(x) can be computed as

⊔
↑f(xi).

Furthermore, this should hold at 2.
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Scott’s thesis

How big is [[N⊥ → N⊥] → N⊥?

Scott observed that a terminating computation of type
(nat → nat) → nat

can query its argument only finitely often.

Thus only a finite part of the graph of the argument is needed.

This was known to recursion theorists as the Myhill-Shepardson Theorem.

Scott formulated and generalized this as follows:

If f is computable and if the input is of the form
⊔

↑xi then the
output f(x) can be computed as

⊔
↑f(xi).

Furthermore, this should hold at all types.
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Domains

Definition. A Scott domain is an ordered structure 〈D;⊑〉 such that

• there is a smallest element ⊥;

• sups of chains (directed sets) always exist;

• every element is the sup of finite elements;

• there are only countably many finite elements;

• sups of bounded sets exist.

Morphisms are Scott-continuous functions: f(
⊔

↑
i∈I xi) =

⊔
↑
i∈I f(xi)
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The category Scott

• Scott is closed under many constructions: lifting, product, function
space (“cartesian closed”)

• All functions have fixpoints: fix : [D → D] → D such that
f(fixf) = fixf

• fix is a morphism in Scott

• Functors Scott → Scott have fixpoints (“domain equations”)

NB: It cannot be closed under sums but there is a reasonable alternative.

1
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The category Scott

• Scott is closed under many constructions: lifting, product, function
space (“cartesian closed”)

• All functions have fixpoints: fix : [D → D] → D such that
f(fixf) = fixf

• fix is a morphism in Scott

• Functors Scott → Scott have fixpoints (“domain equations”)

NB: It cannot be closed under sums but there is a reasonable alternative.

This is Scott’s “type-theoretic alternative to ISWIM, CUCH, OWHY”
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III. Denotational Semantics
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V. From continuous domains to topology
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The idea of a pure functional language

• Choose a semantic category of types

• Choose some elementary types and type constructors

• Give names to some elementary morphisms

• Choose (and name) mechanisms for combining morphisms

• Decide on rewrite rules for the combinators

Models of Computation with Order and Topology, Isfahan, April 15, 2015 16



The idea of a pure functional language

• Choose a semantic category of types

• Choose some elementary types and type constructors

• Give names to some elementary morphisms

• Choose (and name) mechanisms for combining morphisms

• Decide on rewrite rules for the combinators

Models of Computation with Order and Topology, Isfahan, April 15, 2015 16



The idea of a pure functional language

• Choose a semantic category of types

• Choose some elementary types and type constructors

• Give names to some elementary morphisms

• Choose (and name) mechanisms for combining morphisms

• Decide on rewrite rules for the combinators

Models of Computation with Order and Topology, Isfahan, April 15, 2015 16



The idea of a pure functional language

• Choose a semantic category of types

• Choose some elementary types and type constructors

• Give names to some elementary morphisms

• Choose (and name) mechanisms for combining morphisms

• Decide on rewrite rules for the combinators

Models of Computation with Order and Topology, Isfahan, April 15, 2015 16



The idea of a pure functional language

• Choose a semantic category of types

• Choose some elementary types and type constructors

• Give names to some elementary morphisms

• Choose (and name) mechanisms for combining morphisms

• Decide on rewrite rules for the combinators
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Example: µ-recursive functions

• category of types: sets and partial functions

• elementary types: Nk

type constructors: none

• elementary morphisms: 0, s, πi

• combinators: composition, primitive recursion, µ-recursion

• rewrite rules: defining equations:

h(n, x1, . . . , xk) −→ if n = 0
then f(x1, . . . , xk)
else g(n− 1, h(y, x1, . . . , xk), x1, . . . , xk)
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PCF (Programming computable functions)

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977

Category of types: Scott

Elementary types and type constructors:

• B⊥ for the booleans

• N⊥ for the natural numbers

• [· → ·] as the only constructor
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Elementary morphisms

• t and f in B⊥

• 0, 1, 2, 3, etc., in N⊥

• succ and pred in N⊥ → N⊥

• ifσ in B⊥ → σ → σ → σ for every (definable) type σ

• fixσ in [σ → σ] → σ for every (definable) type σ
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Combinators

Could use K and S, known from combinatory logic.

Alternatively: lambda abstraction and application.

This works because we have a cartesian closed category.
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Rewrite rules

if t M N −→M
C −→ C ′

if C M N −→ if C ′ M N

fixM −→M(fixM)

(λx.M)N −→M [x := N ]

etc. etc.
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Expressivity

Enough elementary types and type constructors?

Theorem. Every Scott domain is a retract of N⊥ → N⊥

Enough primitive functions and constructors?

Theorem. Every partial recursive function from N to N is programmable
in PCF.

Enough rewrite rules?

Theorem. If a program expression P denotes n ∈ N then P can be
rewritten to n in finitely many steps (“adequacy”).
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Expressivity — the bad news

Fact. Even the finite domain B2
⊥ → B⊥

∼= [B⊥ → [B⊥ → B⊥]] contains

elements which are not denoted by a term of PCF (as already noted by

Scott).

Fact. Consequently, there are differences in the model which are

“invisible” to the programming language.

This is the 2.

Two directions for a solution:

1) Make the language richer

2) Restrict the model
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History of the “Full Abstraction Problem”

Some contributors:

Plotkin, Abramsky, Berry, Brookes, Bucciarelli, Cartwright, Curien,
Ehrhard, Felleisen, Geva, Girard, Hyland, Jagadeesan, Jung, Lévy,
Longley, Kahn, Malacaria, Meyer, Milner, Mulmuley, Nickau, O’Hearn,
Ong, Riecke, Sazonov, Sieber, Stoughton, Streicher, Tiuryn, Winskel
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One solution

A. Jung and J. Tiuryn. A new characterization of lambda definability. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and
Applications, volume 664 of Lecture Notes in Computer Science, pages
245–257. Springer Verlag, 1993

P. W. O’Hearn and J. G. Riecke. Kripke logical relations and PCF.
Information and Computation, 120(1):107–116, 1995

but here there are infinitely many conditions imposed on the model. Can
one do better?

Theorem. [Loader 1996] It is not decidable which finitary elements of
Scott are PCF-definable.

Th. Streicher. Domain-Theoretic Foundations of Functional
Programming. World Scientific, 2006. 132pp
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Nonetheless, good things have happened

• Scott’s original proposal (“LCF”) led to proof assistants HOL and
Isabelle

• PCF led to functional programming languages ML (OCaml) and
Haskell

• The Full Abstraction Problem led to Linear Logic and Game Semantics

• Game semantics has led to verifiers and compilers (Ghica)
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Exact real-number computation

M. H. Escardó. PCF extended with real numbers. Theoretical Computer

Science, 162:79–115, 1996
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A new domain

Neither the unit interval [0, 1] nor the real line R are Scott domains. We
replace this with the interval domain I = {[a, b] | 0 ≤ a ≤ b ≤ 1}, ordered
by reversed inclusion.

1 = [1, 1]0 = [0, 0]

[0, 1]

This has all the properties of Scott domains except that there are no
“finite elements” apart from ⊥ = [0, 1].
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Scott domains

Definition.

A Scott domain is an ordered structure 〈D;⊑〉 such that

• there is a smallest element ⊥;

• sups of chains (directed sets) always exist;

• every element is the sup of finite elements;

• there are only countably many finite elements;

• sups of bounded sets exist.

category Scott
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Continuous Scott domains

Definition.

A continuous Scott domain is an ordered structure 〈D;⊑〉 such that

• there is a smallest element ⊥;

• sups of chains (directed sets) always exist;

• every element is the sup of relatively finite elements;

• there is some countable basis;

• sups of bounded sets exist.

category contScott

Models of Computation with Order and Topology, Isfahan, April 15, 2015 30



The way-below relation

An element x is way-below another element y if you “can’t reach y
without passing x:”

y ⊑
⊔

↑

i∈I

ai ⇒ x ⊑ ai for some i ∈ I

⊔↑ai

y

x

a0

a1

One writes x≪ y if this is the case.
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The way-below relation on I

An interval [a, b] is way-below [a′, b′] if and only if a < a′ and b′ < b, in
other words, if [a, b] is a neighbourhood of [a′, b′].

This hints at a connection between Domain Theory and classical
mathematics (topology) that Dana Scott and a group of mathematicians
explored in detail in the 1970s.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott. A Compendium of Continuous Lattices. Springer Verlag, 1980

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003
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Escardó’s RealPCF

Much is as in PCF but we now work in contScott, so I is one of the
objects available to us. We take as primitive the following three re-scaling
functions:

”left” ”middle” ”right”
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Some findings

Theorem. RealPCF is expressive: every computable function I → I is

programmable (but parallel constructs are necessary).

Theorem. RealPCF’s rewrite rules are adequate.
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Probabilistic computation

Now imagine that we want the language to contain a probabilistic
operator, such as

choose 0.5 M N

which evaluates as M or N, each with probability 1/2.

There are no “maps” for this in either the category Scott or contScott.
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Probabilistic computation

Now imagine that we want the language to contain a probabilistic
operator, such as

choose 0.5 M N

which evaluates as M or N, each with probability 1/2.

There are no “maps” for this in either the category Scott or contScott.

Solution. Add a monad P to the categorical structure and interpret a
term of type σ → τ as a morphism Pσ → Pτ .

In our case, we expect P to capture probabilistic information over a
domain D, i.e., instead of speaking of a fixed value in D, we say what the
probability of the value belonging to a set O is.
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Probabilistic semantics

D

JMK

O

p(JMK ∈ O) > q

D

deterministic probabilistic

J. Goubault-Larrecq. Full abstraction for non-deterministic and
probabilistic extensions of PCF I — the angelic cases. Journal of Logic
and Algebraic Programming, 2015. To appear
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Enter the Scott topology

Definition. A set U of a domain is Scott-open if it is upwards closed
and unreachable by directed suprema:

⊔
↑

i∈I

ai ∈ U ⇒ ai ∈ U for some i ∈ I

Fact. Topologically continuous functions between domains are precisely
the Scott-continuous ones.
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Valuations

Definition. [Saheb-Djahromi 1980] A valuation is a Scott-continuous
map ν from the open sets of a domain D to the unit interval [0, 1],
satisfying

— ν(∅) = 0, ν(D) = 1

— ν(O ∪ U) = ν(O) + ν(U)− ν(O ∩ U)

Theorem. [Lawson, Edalat, Keimel] For many spaces, valuations and
measures are in one-to-one correspondence.

Furthermore, there is a very satisfactory theory of integration based on
valuations, as well as a Riesz theorem.
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The probabilistic powerdomain

The set VD of valuations, ordered pointwise, is called the probabilistic
powerdomain of D.

Theorem. [Jones 1990] The probabilistic powerdomain of a continuous
domain D is again a continuous domain.

However: 1
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The probabilistic powerdomain

The set VD of valuations, ordered pointwise, is called the probabilistic
powerdomain of D.

Theorem. [Jones 1990] The probabilistic powerdomain of a continuous
domain D is again a continuous domain.

However: We do not get a Scott-domain, as bounded sets may not have a
supremum.
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What is a “category of domains”?

We want the semantic category to be

• cartesian closed, so we can form function spaces (and use the
λ-calculus as our base language)

• approximated, so that we can link syntax and semantics

• closed under V , so that we can model probabilistic computation
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Continuous domains

Definition.

A continuous domain is an ordered structure 〈D;⊑〉 such that

• there is a smallest element ⊥;

• sups of chains (directed sets) always exist;

• every element is the sup of relatively finite elements;

• there is some countable basis;

Have dropped: sups of bounded sets
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Cartesian closure

Fact. The category of continuous domains is not cartesian closed.

Theorem. [J. 1990] The largest cartesian closed category of continuous
domains is FS, the category of FS-domains.
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Closure under V

Theorem. [J. & Tix 1998] If D is a finite tree or a reversed finite tree,
then VD is an FS-domain.

This is still the best available result.

A. Jung and R. Tix. The troublesome probabilistic powerdomain. In
A. Edalat, A. Jung, K. Keimel, and M. Kwiatkowska, editors, Proceedings
of the Third Workshop on Computation and Approximation, volume 13 of
Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers B.V., 1998. 23 pages
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Overview

approximated cart. closed closed under V

DCPO X X X

CONT X X X

FS X X ??

RB X X ??

contScott X X X

Scott X X X
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Overview

approximated cart. closed closed under V

DCPO X X X

CONT X X X

QRB X X X J G-L 2012

FS X X ??

RB X X ??

contScott X X X

Scott X X X
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Domains and topology

We already needed the Scott topology ΣD for the definition of the

probabilistic powerdomain.

We also know that Scott-continuity is the same as topological continuity.

In fact, the order structure and the topology determine each other

uniquely for continuous domains.

Furthermore, a Scott-open set on D is the same as a

continuous (“characteristic”) function D → 2. So open

sets are analogous to semi-decidable properties (albeit at all

types, not just N). ⊥

⊤
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Stably compact spaces

Idea: Drop the order but keep a “nice” topological structure.

Definition. A 1 is a topological space which is

• T0

• compact

• locally compact

• stably compact: (finite) intersections of saturated compact sets are
compact

• well-filtered:
⋂↓

i∈IKi ⊆ U ⇒ ∃i ∈ I. Ki ⊆ U
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Stably compact spaces

Idea: Drop the order but keep a “nice” topological structure.

Definition. A stably compact space is a topological space which is

• T0

• compact

• locally compact

• stably compact: (finite) intersections of saturated compact sets are
compact

• well-filtered:
⋂↓

i∈IKi ⊆ U ⇒ ∃i ∈ I. Ki ⊆ U
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They are quite nice, actually...

Fact. Compact Hausdorff spaces are stably compact.

Fact. Most domains are stably compact in their Scott topology, for
example, all of FS.

Theorem. [J 2004] Stably compact spaces are closed under the
probabilistic powerdomain construction (as well as many others).

Theorem. [Lawson; Alvarez-Manilla, J, Keimel, 2004] Every
valuation on a stably compact space extends uniquely to a measure.

But...

Fact. SCS is not cartesian closed.

Models of Computation with Order and Topology, Isfahan, April 15, 2015 48



They are quite nice, actually...

Fact. Compact Hausdorff spaces are stably compact.
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But...

Fact. SCS is not cartesian closed.
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Approximation

How to capture topological spaces with syntax?

There may not be any canonical approximating elements...

Idea: 1

That’s possible because of 1 which establishes an equivalence between
categories of topological spaces and categories of lattices.

Stone spaces ∼= Boolean algebras
spectral spaces ∼= distributive lattices

Fact. Scott domains are spectral spaces.
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Approximation

How to capture topological spaces with syntax?

There may not be any canonical approximating elements...

Idea: Work entirely with the lattice of open sets.

That’s possible because of Stone duality which establishes an equivalence
between categories of topological spaces and categories of lattices.

Stone spaces ∼= Boolean algebras
spectral spaces ∼= distributive lattices

Fact. Scott domains are spectral spaces.

Models of Computation with Order and Topology, Isfahan, April 15, 2015 49



Abramsky’s Domain Theory in Logical Form

program fragment
P : σ

semantic space
Dσ

program logic
Lσ

logical interpretationdenotational interpretation

Stone duality

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51:1–77, 1991

(LiCS Test-of-Time award 2007)
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The logical reading of topology

open set = (observable) predicate

continuous function = predicate transformer

point = model (i.e. prime filter of formulas)

domain = propositional logical theory

domain construction = presentation of a logical theory

M. B. Smyth. Powerdomains and predicate transformers: a topological
view. In J. Diaz, editor, Automata, Languages and Programming, volume
154 of Lecture Notes in Computer Science, pages 662–675. Springer
Verlag, 1983

M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, vol. 1, pages
641–761. Clarendon Press, 1992
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Example: A theory for nondeterministic choice

From a propositional logical theory L construct its Smyth power
theory PL by

generators {�ϕ | ϕ ∈ L}

axioms t ↔ �t

�(ϕ ∧ ψ) ↔ �ϕ ∧�ψ

rule
ϕ→ ψ

�ϕ→ �ψ
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However....

Stably compact spaces are not spectral.
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Going beyond lattices

Definition. A strong proximity lattice is a distributive lattice
(L;∧,∨, t, f) equipped with a binary relation ≺ which satisfies the
“logical” axioms

(≺–t) x ≺ t
(f –≺) f ≺ x
(≺–∧) x ≺ y, x ≺ y′ ⇐⇒ x ≺ y ∧ y′

(∨–≺) x ≺ y, x′ ≺ y ⇐⇒ x ∨ x′ ≺ y

and the interpolation axioms

(∧–≺) a ∧ x ≺ y =⇒ ∃a′ ∈ X. a ≺ a′ and a′ ∧ x ≺ y
(≺–∨) x ≺ y ∨ a =⇒ ∃a′ ∈ X. a′ ≺ a and x ≺ y ∨ a′
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Stone duality for stably compact spaces

Theorem. [J & Sünderhauf 1995] The Stone duals of strong
proximity lattices are precisely the stably compact spaces.
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Transferring the probabilistic power space construction

to the logic via Stone Duality

SCS <
Stone

> SPL

SCS

V

∨

<
Stone

> SPL

V

∨

................
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The logic of the probabilistic powerdomain

Task. From a domain logic L give a presentation for VL

generators 〈ϕ, r〉 for all ϕ ∈ L and all r ∈ (0, 1) ∩Q

with the intended reading: probability of ϕ is greater than r

axioms and rules
〈f, p〉 ≺ f

ϕ ∨ ψ ≺ ρ ϕ ∧ ψ ≺ σ p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ρ, r〉 ∨ 〈σ, s〉

ϕ ≺ ρ ∧ σ ψ ≺ ρ ∨ σ p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ρ, r〉 ∨ 〈σ, s〉
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Illustrating the soundness of the first modularity law

(over-simplified)

ψ

ϕ

p+ q > r + s

〈ϕ, p〉 ∧ 〈ψ, q〉 ≺ 〈ϕ ∨ ψ, r〉 ∨ 〈ϕ ∧ ψ, s〉
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Theorem 1. [Heckmann 1994; J & Moshier 2002]

If L is a domain logic that is sound and complete for the stably compact
space X, then logic VL is sound and complete for the probabilistic power
space VX.
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Desharnais-Edalat-Panangaden Logic

ϕ,ψ ::= t | ϕ ∧ ψ | 〈a, r〉ϕ

Say
s 
 〈a, r〉ϕ

if the probability of the result state satisfying ϕ is greater than r when
action a is performed in state s.

Theorem. [Desharnais, Edalat, Panangaden, 1998] Two states of a
labelled Markov process are (Larsen-Skou) bisimilar if and only if they
satisfy the same DEP formulas.
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Desharnais-Edalat-Panangaden Logic

ϕ,ψ ::= t | ϕ ∧ ψ | 〈a, r〉ϕ

Say
s 
 〈a, r〉ϕ

if the probability of the result state satisfying ϕ is greater than r when
action a is performed in state s.

Theorem. [Desharnais, Edalat, Panangaden, 1998] Two states of a
labelled Markov process are (Larsen-Skou) bisimilar if and only if they
satisfy the same DEP formulas.

Note that DEP logic contains formulas but no derivation system.
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Probabilistic synchronization trees

Consider the labelled Markov process Proc defined by the domain equation

D ∼= VDAct

Theorem. [Desharnais, Gupta, Jagadeesan, Panangaden, 2003]
For any labelled Markov process, two states are bisimilar if and only if
they are mapped to the same element under the final morphism into Proc.
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Probabilistic synchronization trees

Consider the labelled Markov process Proc defined by the domain equation

D ∼= VDAct

Theorem. [Desharnais, Gupta, Jagadeesan, Panangaden, 2003]
For any labelled Markov process, two states are bisimilar if and only if
they are mapped to the same element under the final morphism into Proc.

Idea: Consider the domain logic L associated with Proc by Stone duality,
which has disjunction as well as conjunction (and so is richer than DEP
logic) but also comes equipped with a sound and complete derivation
system.
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Semantic/logical proof of the DEP Theorem

The domain logic L for Proc is generated by the grammar

ϕ,ψ ::= t | f | ϕ ∧ ψ | ϕ ∨ ψ | 〈a, ϕ, r〉

By soundness and completeness of domain logic, two elements of D are
equal if and only if they satisfy the same domain logic formulas.

Hence, all we need to do is show that disjunctions are not required to
separate round prime filters.
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Proof sketch

(Ignoring the set of actions)

• Let F and G be two different round prime filters, say F 6⊆ G
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• Let F and G be two different round prime filters, say F 6⊆ G

• there exists ϕ ∈ F , ϕ 6∈ G
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Proof sketch

(Ignoring the set of actions)

• Let F and G be two different round prime filters, say F 6⊆ G

• there exists ϕ ∈ F , ϕ 6∈ G

• consider the structure of ϕ:

it cannot be f because F is prime;

it cannot be t because G is a filter;

if it is of the form ψ ∧ ψ′ then one of ψ or ψ′ must belong to F \G
because G is a filter;
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if it is of the form ψ ∨ ψ′ then one of ψ or ψ′ must belong to F \G
because F is prime.

So, can assume that ϕ has the form 〈ψ, p〉.
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if it is of the form ψ ∨ ψ′ then one of ψ or ψ′ must belong to F \G
because F is prime.

So, can assume that ϕ has the form 〈ψ, p〉.

• Thus we have shown how to eliminate all propositional structure at the
outer level. We must now show how we can eliminate “embedded”
disjunctions. Since formulas in L have finite depth, it is sufficient to
show how disjunctions can be “percolated up” from one level to the
next higher one.
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if it is of the form ψ ∨ ψ′ then one of ψ or ψ′ must belong to F \G
because F is prime.

So, can assume that ϕ has the form 〈ψ, p〉.

• Thus we have shown how to eliminate all propositional structure at the
outer level. We must now show how we can eliminate “embedded”
disjunctions. Since formulas in L have finite depth, it is sufficient to
show how disjunctions can be “percolated up” from one level to the
next higher one.

• So consider the case that ϕ has the form 〈ρ ∨ σ, p〉. Remember that F
defines a valuation µ, and G a valuation ν. By construction,
µ(ρ ∨ σ) > ν(ρ ∨ σ).
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By the modularity of valuations,

µ(ρ ∨ σ) = µ(ρ) + µ(σ)− µ(ρ ∧ σ)

we have

µ(ρ) + µ(σ)− µ(ρ ∧ σ) > ν(ρ) + ν(σ)− ν(ρ ∧ σ)

Hence one of the following must be true:

• µ(ρ) > ν(ρ) or 〈ρ, r〉 ∈ F \G for some r ∈ (0, 1)

• µ(σ) > ν(σ) or 〈σ, r〉 ∈ F \G for some r ∈ (0, 1)

• µ(ρ ∧ σ) < ν(ρ ∧ σ) or 〈ρ ∧ σ, r〉 ∈ G \ F for some r ∈ (0, 1)

Q.E.D.
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